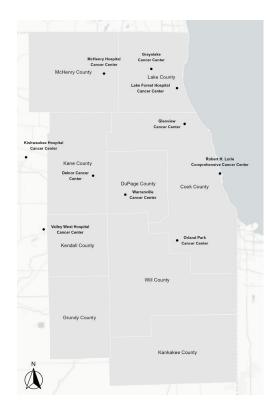


Protecting Privacy, Amplifying Insights: De-identifying Clinical Trial Data through Geographic Aggregation with R gatpkg

Daniel Antonio, MPH Statistical Analyst

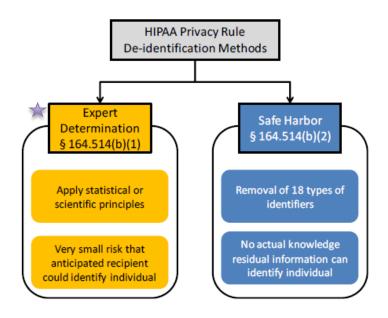
Catchment Area

- Nine county catchment area
- 11th in population density
- 17th in total population
- Total population 8.7 million
 - 66% of the state population
- 90% of LCC patients come from catchment area



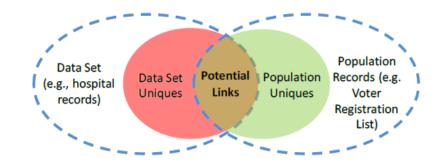
Making it Happen

- Goal: Map Northwestern Medicine cancer clinical trial data to identify low enrollment areas in our catchment area
- Issue: Data must be de-identified before use
- Solution: De-identify data with the R Geographic Aggregation Tool (GAT)



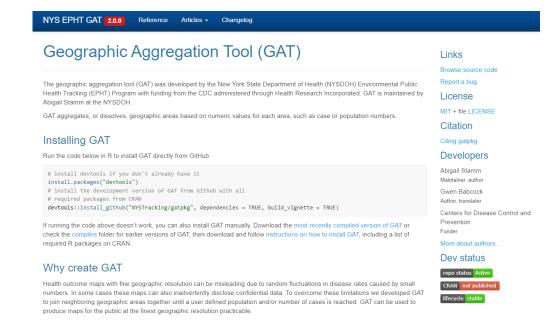
De-Identification: Expert Determination

- Techniques: suppression, generalization, & randomization
- Goal: transform the data to have a very small probability of identifying individual subjects using external data
- Risk Assessment conducted after data transformation ensures low risk



De-Identification: Risk Assessment

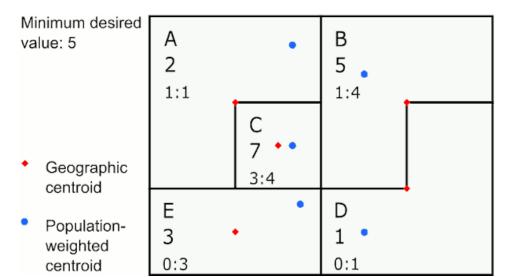
- Evaluates probably of identifying a subject using an external dataset
- Example
 - Hospital records and voter registration lists could have potential links
 - An individual could be matched using unique links in both datasets
- Different probability thresholds exists
 1 in 5 (P=0.20) to 1 in 20 (P=0.05)



R Geographic Aggregation Tool (GAT)

An easy solution using generalization

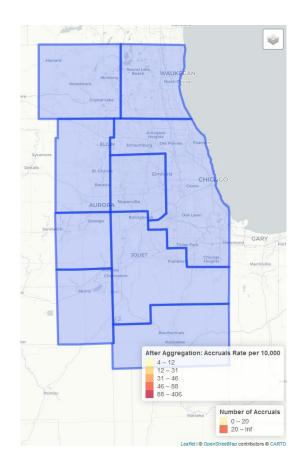
- Addresses small case counts and confidential data by merging geographies based on user-defined requirements
- High Customization:
 - Exclusions
 - Min & Max
 - Merging Boundaries
 - Merging Algorithms



Geographic Aggregation Process

Merging to neighbor with least value

- Step 1. Select the smallest number
 (D) and merge with the neighbor with the smallest value (E)
- Step 2. Repeat until the minimum value is achieved
- Pros: largest number of areas (more granular)
- Cons: could produce "weird snaky shapes and possibly donuts"



De-identification

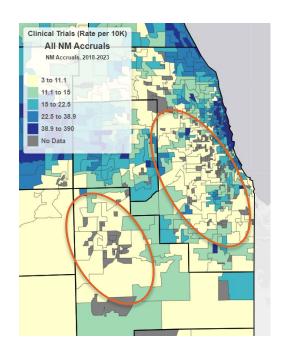
Our workflow

- Geocoded clinical trial patients from 2018-2023 (<u>DeGAUSS</u>) from all northwestern facilities
- Count the number of accruals per census tract
- Deploy GAT to merge census tracts to meet a minimum value of 20 accruals (P=0.05)
 - Using the least value algorithm
- Exclude tracts with no accruals
- Calculate accrual rates per 10,000
- Conduct risk assessment

Findings

Does it meet HIPAA Standards?

	Before Aggregation, N = 2,100	After Aggregation, N = 695
Number of Accruals	5 (3, 9)	26 (23, 31)
Less than 20	1,793 (85%)	3 (0.4%)
More than 20	103 (5%)	478 (69%)
Zero	214 (10%)	214 (31%)
Re-identification probability	1/1 = 1.0	1/20 = 0.05



Findings

What can we learn?

	Bottom Quantile	Top Quantile
Distance from NM Facility	10 Miles	3 Miles
Uninsured	9%	3%
Household Income	82K	128K
Above HS Education	61%	91%
Minority Population	44%	16%
History of Cancer Diagnosis	5%	5%

COE Activities

Guiding outreach and research

- Disseminating findings and data to key stakeholders
 - Community Advisory Board, Clinical Trials Office, Leadership, Institutes
- Integrating data within Cancer InFocus applications and other reporting systems
- Targeting specific communities with education and outreach
- Conducting further research
 - Target low enrollment areas/groups
 - Explore other determinants of clinical trial participation
 - Explore alignment between patient volume and accruals

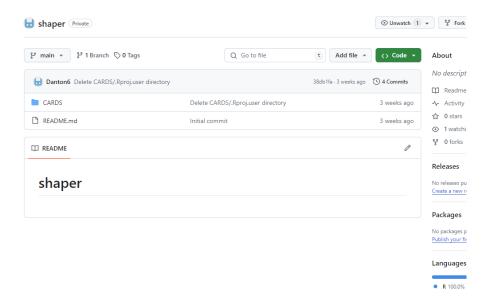
Advantages & Limitations

Advantages

- Granular data helps better understand our enrollments (who, what, when, where), especially insightful to CTO
- Complies with HIPAA regulations
- Relatively simple method to apply
- Applicable to other data

Limitations

- Output is only as good as input
- Aggregated areas are not stagnant geographies



Next Steps

Sharing & Evolving

- Repository of aggregation process
- De-identified patient volumes data
- Continue discussions for how to best use data to inform COE activities

Thank You

